82 research outputs found

    A comparison of smooth basis constructions for isogeometric analysis

    Full text link
    In order to perform isogeometric analysis with increased smoothness on complex domains, trimming, variational coupling or unstructured spline methods can be used. The latter two classes of methods require a multi-patch segmentation of the domain, and provide continuous bases along patch interfaces. In the context of shell modeling, variational methods are widely used, whereas the application of unstructured spline methods on shell problems is rather scarce. In this paper, we therefore provide a qualitative and a quantitative comparison of a selection of unstructured spline constructions, in particular the D-Patch, Almost-C1C^1, Analysis-Suitable G1G^1 and the Approximate C1C^1 constructions. Using this comparison, we aim to provide insight into the selection of methods for practical problems, as well as directions for future research. In the qualitative comparison, the properties of each method are evaluated and compared. In the quantitative comparison, a selection of numerical examples is used to highlight different advantages and disadvantages of each method. In the latter, comparison with weak coupling methods such as Nitsche's method or penalty methods is made as well. In brief, it is concluded that the Approximate C1C^1 and Analysis-Suitable G1G^1 converge optimally in the analysis of a bi-harmonic problem, without the need of special refinement procedures. Furthermore, these methods provide accurate stress fields. On the other hand, the Almost-C1C^1 and D-Patch provide relatively easy construction on complex geometries. The Almost-C1C^1 method does not have limitations on the valence of boundary vertices, unlike the D-Patch, but is only applicable to biquadratic local bases. Following from these conclusions, future research directions are proposed, for example towards making the Approximate C1C^1 and Analysis-Suitable G1G^1 applicable to more complex geometries

    Topical Application of an Irreversible Small Molecule Inhibitor of Lysyl Oxidases Ameliorates Skin Scarring and Fibrosis

    Get PDF
    Scarring is a lifelong consequence of skin injury, with scar stiffness and poor appearance presenting physical and psychological barriers to a return to normal life. Lysyl oxidases are a family of enzymes that play a critical role in scar formation and maintenance. Lysyl oxidases stabilize the main component of scar tissue, collagen, and drive scar stiffness and appearance. Here we describe the development and characterisation of an irreversible lysyl oxidase inhibitor, PXS-6302. PXS-6302 is ideally suited for skin treatment, readily penetrating the skin when applied as a cream and abolishing lysyl oxidase activity. In murine models of injury and fibrosis, topical application reduces collagen deposition and cross-linking. Topical application of PXS-6302 after injury also significantly improves scar appearance without reducing tissue strength in porcine injury models. PXS-6302 therefore represents a promising therapeutic to ameliorate scar formation, with potentially broader applications in other fibrotic diseases

    Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics

    Full text link

    Quadratic splines on quad-tri meshes: Construction and an application to simulations on watertight reconstructions of trimmed surfaces

    No full text
    Given an unstructured mesh consisting of quadrilaterals and triangles (we allow both planar and non-planar meshes of arbitrary topology), we present the construction of quadratic splines of mixed smoothness — C1 smooth away from the unstructured regions of T and C0 smooth otherwise. The splines have several useful B-spline-like properties – partition of unity, non-negativity, local support and linear independence – and allow for straightforward imposition of boundary conditions. We propose a non-nested refinement process for the splines with multiple advantages — a simple computer implementation, reduction in the footprint of C0 smoothness, boundary preservation, and excellent approximation behaviour in simulations. Furthermore, the refinement process leaves the splines invariant on the mesh boundary. Numerical tests indicate that the spline spaces demonstrate optimal approximation behaviour in the L2 and H1 norms under mesh refinement, and provide a viable approach to simulations on watertight reconstructions of trimmed surfaces.Numerical Analysi

    Almost-C<sup>1</sup> splines: Biquadratic splines on unstructured quadrilateral meshes and their application to fourth order problems

    No full text
    Isogeometric Analysis generalizes classical finite element analysis and intends to integrate it with the field of Computer-Aided Design. A central problem in achieving this objective is the reconstruction of analysis-suitable models from Computer-Aided Design models, which is in general a non-trivial and time-consuming task. In this article, we present a novel spline construction, that enables model reconstruction as well as simulation of high-order PDEs on the reconstructed models. The proposed almost-C1 splines are biquadratic splines on fully unstructured quadrilateral meshes (without restrictions on placements or number of extraordinary vertices). They are C1 smooth at all regular and extraordinary vertices. Moreover, they are C1 smooth across all edges between regular vertices and C0 smooth across all edges that are adjacent to an extraordinary vertex. The splines thus form H2-nonconforming analysis-suitable discretization spaces. This is the lowest-degree unstructured spline construction that can be used to solve fourth-order problems. The associated spline basis is non-singular and has several B-spline-like properties (e.g., partition of unity, non-negativity, local support), the almost-C1 splines are described in an explicit BĂ©zier-extraction-based framework that can be easily implemented. Numerical tests suggest that the basis is well-conditioned and exhibits optimal approximation behaviour.Numerical Analysi

    Counting the dimension of splines of mixed smoothness: A general recipe, and its application to planar meshes of arbitrary topologies

    No full text
    In this paper, we study the dimension of bivariate polynomial splines of mixed smoothness on polygonal meshes. Here, “mixed smoothness” refers to the choice of different orders of smoothness across different edges of the mesh. To study the dimension of spaces of such splines, we use tools from homological algebra. These tools were first applied to the study of splines by Billera (Trans. Am. Math. Soc. 310(1), 325–340, 1988). Using them, estimation of the spline space dimension amounts to the study of the Billera-Schenck-Stillman complex for the spline space. In particular, when the homology in positions 1 and 0 of this complex is trivial, the dimension of the spline space can be computed combinatorially. We call such spline spaces “lower-acyclic.” In this paper, starting from a spline space which is lower-acyclic, we present sufficient conditions that ensure that the same will be true for the spline space obtained after relaxing the smoothness requirements across a subset of the mesh edges. This general recipe is applied in a specific setting: meshes of arbitrary topologies. We show how our results can be used to compute the dimensions of spline spaces on triangulations, polygonal meshes, and T-meshes with holes.Numerical Analysi

    Algebraic methods to study the dimension of supersmooth spline spaces

    No full text
    Multivariate piecewise polynomial functions (or splines) on polyhedral complexes have been extensively studied over the past decades and find applications in diverse areas of applied mathematics including numerical analysis, approximation theory, and computer aided geometric design. In this paper we address various challenges arising in the study of splines with enhanced mixed (super-)smoothness conditions at the vertices and across interior faces of the partition. Such supersmoothness can be imposed but can also appear unexpectedly on certain splines depending on the geometry of the underlying polyhedral partition. Using algebraic tools, a generalization of the Billera–Schenck–Stillman complex that includes the effect of additional smoothness constraints leads to a construction which requires the analysis of ideals generated by products of powers of linear forms in several variables. Specializing to the case of planar triangulations, a combinatorial lower bound on the dimension of splines with supersmoothness at the vertices is presented, and we also show that this lower bound gives the exact dimension in high degree. The methods are further illustrated with several examples.Numerical Analysi

    Dimension of polynomial splines of mixed smoothness on T-meshes

    Get PDF
    In this paper we study the dimension of splines of mixed smoothness on axis-aligned T-meshes. This is the setting when different orders of smoothness are required across the edges of the mesh. Given a spline space whose dimension is independent of its T-mesh's geometric embedding, we present constructive and sufficient conditions that ensure that the smoothness across a subset of the mesh edges can be reduced while maintaining stability of the dimension. The conditions have a simple geometric interpretation. Examples are presented to show the applicability of the results on both hierarchical and non-hierarchical T-meshes. For hierarchical T-meshes it is shown that mixed smoothness spline spaces that contain the space of PHT-splines (Deng et al., 2008) always have stable dimension
    • …
    corecore